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Abstract: In this paper, a modified delayed mathematical model for the dynamics of HIV with cure rate is consid-
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1 Introduction
Mathematical modeling in epidemiology provides un-
derstanding of the mechanisms that influence the
spread of a disease and it suggests control strate-
gies [1]. Human immunodeficiency virus (HIV) is
a lentivirus (a member of the retrovirus family) that
causes acquired immunodeficiency syndrome (AIDS).
To understand HIV dynamics and disease progres-
sion, varieties of dynamic models based on differen-
tial equations have been proposed in [2, 3, 4, 5, 6].

We will consider some models for HIV–1 popula-
tion dynamics below from [7, 8]. Here there are two
components: x, the number of uninfected CD4+ T–
cells and y, the number of infected such cells. Then
the evolution of the system is described as follows:

dx
dt = s− µx− βxy,
dy
dt = βxy − vy,

where all the parameters and variables are non–
negative. s denotes the rate of production of CD4+
T–cells, µ is the per capita death rate, βxy denotes the
rate of infection of CD4+ T–cells by virus, and vy is
the rate of disappearance of infected cells. The viral
variable has been omitted for simplicity. A more com-

plete model of HIV dynamics takes account of three
components: the uninfected and infected CD4+ T–
cells, and the virus in plasma. Then the revised system
is: 

dx
dt = s− µx− βxz,
dy
dt = βxz − vy,
dz
dt = cy − uz.

Here c is the rate of production of virions by infected
cells, u is the death rate of virus particles. z is the
number of virus particles.

In [9], Wang et al modified the term βxz into βxz
x+z

and studied the stability of equilibrium and basin of
global attraction. Following the ideas in [10], Srivas-
tava and Chandra assumed that a fraction of infected
CD4+ T cells returned to the uninfected class, and
presented the following model by taking account of
the evolution of drug resistance in [11]:

dx
dt = s− kxz − dx+ by,
dy
dt = kxz − (b+ δ)y,
dz
dt = Nδy − cz.

(1)

Here, all the coefficients are positive constants. The
parameter s is the inflow rate of T cells and d is the
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natural death rate, k represents the rate of infection
of T cells, δ represents the death rate of infected T
cells and includes the possibility of death by burst-
ing of infected T cells, hence δ ≥ d, b is the rate at
which infected cells return to uninfected class, c is the
death rate of virus and N is the average number of vi-
ral particles produced by infected cells. The local and
global stabilitis of non–negative equilibria have been
discussed by means of compound matrix.

Recently, it has been realized that time delay
should be taken into consideration. Motivated by the
method in [12], we introduce a time delay to represent
the incubation time that the vectors need to become
infectious. The new model is

dx
dt = s− kx(t− τ)z(t− τ)− dx+ by,
dy
dt = kx(t− τ)z(t− τ)− (b+ δ)y,
dz
dt = Nδy − cz,

(2)

here τ is the time lag from infection of cells to the
cells becoming actively infected.

If the first equation of (2) has no time delay, the
stability of equilibria was studied in [11]. It was found
that the delay has no effect on the stability result under
certain conditions. However, for system (2), whether
the time delay will lead to periodic oscillations from
Hopf bifurcation is interesting. The theoretical analy-
sis for exploring this phenomenon is more challenging
and remains unknown.

It should be mentioned that some papers have fo-
cused on the stability and local Hopf bifurcation in
delayed HIV model, such as [4, 13, 14, 15]. Never-
theless, there are few results about the global Hopf bi-
furcation for HIV model. Therefore, the main purpose
of this paper is to discuss the stability of equilibria and
establish the existence of local and global Hopf bifur-
cating periodic solutions.

The paper is organized as follows: in Section 2
and Section 3, the stability criterion and existence of
local Hopf bifurcation are discussed. In Section 4, the
global continuation of local bifurcation is done. In
Section 5, some numerical examples are given to il-
lustrate the theoretical analyses. Finally, conclusions
are given.

2 Stability of Virus–free Equilibrium
In this section, we mainly focus on the local stabil-
ity of uninfected equilibrium. Obviously, if R0 =
Nδks

cd(b+δ) > 1, then there are two nonnegative equilib-
ria:

E1 =

(
s

d
, 0, 0

)
, E2 = (x∗, y∗, z∗).

Here,

x∗ =
(b+ δ)c

Nδk
,

y∗ =
1

δ

(
s− cd(δ + b)

Nδk

)
,

z∗ =
Nδy∗

c
.

The Jacobian matrix of system (2) at virus–free equi-
librium E1 is

J1 =

 −d b −ks
d e

−λτ

0 −(b+ δ) ks
d e

−λτ

0 Nδ −c

 ,
and the characteristic equation is

(λ+ d)[λ2 + (b+ c+ δ)λ+ (b+ δ)c

−Nksδ
d e−λτ ] = 0.

(3)

It is well known that the stability of the equilibrium
of delay differential equation depends on the distri-
bution of the zeros of characteristic equation. In the
following, we shall use the main results in Ruan and
Wei [16], which is a generalization of the lemma in
Cook and Grossman [17], to analyze the distribution
of characteristic roots for (3). We first state the useful
lemma as follows.

Lemma 1 Consider the following exponential poly-
nomial:

P (λ, e−λτ1 , e−λτ2 , . . . , e−λτm)

= λn + p
(0)
1 λn−1 + p

(0)
2 λn−2 + . . .+ p(0)n

+[p
(1)
1 λn−1 + p

(1)
2 λn−2 + . . .+ p(1)n ]e−λτ1

+ . . .

+[p
(m)
1 λn−1 + p

(m)
2 λn−2 + . . .+ p(m)

n ]e−λτm ,

where τi ≥ 0(i = 1, 2, . . . ,m) and p
(i)
j (i =

0, 1, . . . ,m; j = 1, 2, . . . , n) are constants. As
(τ1, τ2, . . . , τm) vary, the sum of the orders of the ze-
ros ofP (λ, e−λτ1 , e−λτ2 , . . . , e−λτm) in the open right
half plane can change only if a zero appears on or
crosses the imaginary axis.

This means that the number of characteristic roots
with positive real parts can change only if there exist
purely imaginary roots.

If τ = 0, from Routh–Hurwitz criterion, all roots
of equation (3) have negative real part when R0 < 1;
only one root of (3) has positive real part when R0 >
1.
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For τ ̸= 0, we assume that λ = iω(ω > 0) is a
root of equation (3). This is the case if and only if ω
satisfies the following equation:

−ω2+iω(b+c+δ)+(b+δ)c =
Nδsk

d
(cosωτ−i sinωτ).

Separating the real and imaginary parts, we have the
following equations for ω:{

−ω2 + c(b+ δ) = Nδsk
d cosωτ,

−ω(b+ c+ δ) = Nδsk
d sinωτ.

It follows that

ω4 +A1ω
2 +A2 = 0, (4)

where
A1 = b2 + c2 + δ2 − 2bδ > 0,

A2 =
(
(b+ δ)c+ Nδsk

d

) (
(b+ δ)c− Nδsk

d

)
.

Hence, if R0 > 1, equation (4) has the
unique positive root ω01 when τ = τl1 =
1
ω0

arcsin
(
−dω0(b+cδ)

Nδsk + 2lπ
)

(l = 0, 1, 2, . . .); if
R0 < 1, equation (4) has no positive root. More-
over, equation (3) has a pair of purely imaginary roots
when R0 > 1, and has no purely imaginary root when
R0 < 1.

Then, let’s consider the transversality condition.
Differentiating equation (3) with respect to τ , we have

(2λ+ b+ c+ δ)
dλ
dτ

+
Nδskτ

deλτ
dλ
dτ

= −λNδsk
deλτ

.

Thus,

sign

{
dRe(λ)

dτ

∣∣∣∣
ω=ω01,τ=τl1

}

= sign

{
Re
(

dλ
dτ

)−1
}

= sign
{

Re
(
−(2λ+ b+ c+ δ)d

λNδske−λτ
− τ

λ

)}
= sign

{
Re
( −(2λ+ b+ c+ δ)

λ(λ2 + (b+ c+ δ)λ+ (b+ δ)c)

)}
= sign

{
i(2ωi+ b+ c+ δ)

ω(−ω2 + (b+ c+ δ)ωi+ (b+ δ)c)

}
= sign

{
2ω2 − 2c(b+ δ) + (b+ c+ δ)2

}
= sign

{
2ω2 + (b+ δ)2 + c2

}
> 0.

According to Lemma 1, we can conclude the stability
of virus–free equilibrium as follows:

Theorem 2 For R0 < 1, all roots of equation (3)
have negative real parts for any τ > 0, then the equi-
librium E1 is absolutely stable. For R0 > 1, equa-
tion (3) has (2l + 3) roots with positive real parts for
τ ∈ (τl1, τ(l+1)1) (l = 0, 1, 2, . . .), then E1 is unsta-
ble.

From Theorem 2, it is found that time delay has
no effect on the dynamic behaviors of equilibriumE1.

3 Existence of Hopf bifurcation
Next, we shall discuss the stability of infected equilib-
rium E2. The linear part of system (2) at E2 is

dX(t)

dt
= AX(t) +BX(t− τ), (5)

where X(t) = (x(t), y(t), z(t))T,

A =

 −d b 0
0 −(b+ δ) 0
0 Nδ −c

 ,
and

B =

 −kz∗ 0 −kx∗
kz∗ 0 kx∗

0 0 0

 .
The characteristic equation of (5) is

λ3+a0λ
2+a1λ+a2+(b0λ

2+ b1λ+B2)e
−λτ = 0,

(6)
where

a0 = b+ c+ d+ δ,
a1 = d(b+ c+ δ) + c(b+ δ),
a2 = cd(b+ δ),
b0 = kz∗,
b1 = k(δ + c)z∗ − c(b+ δ),
b2 = δckz∗ − cd(b+ δ).

If τ = 0, then all roots of equation (6) have neg-
ative real parts when R0 > 1. If τ ̸= 0, this equa-
tion has infinitely many roots. Next, we shall discuss
the sum of zeros of equation (6) in the open right half
plane.

Let λ = iω(ω > 0) be a root of (6), then

−iω3 − a0ω
2 + ia1ω + a2

+(b2 − b0 + ib1ω)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we have{
a1ω − ω3 = (b2 − b0ω

2) sinωτ − b1ω cosωτ,
a0ω

2 − a2 = (b2 − b0ω
2) cosωτ + b1ω sinωτ.

(7)
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Squaring and adding both equations of (7), we can ob-
tain the following sixth–degree equation for ω:

ω6 + (a20 − b20 − 2a1)ω
4 + (a21 − 2a1a2

−b21 + 2b0b2)ω
2 + (a22 − b22) = 0.

(8)

Putting ω2 = u into (8), we can get the following
cubic equation:

F (u) = u3 + (a20 − b20 − 2a1)u
2 + (a21 − 2a1a2

−b21 + 2b0b2)u+ (a22 − b22)

= 0.

Note that

F ′(u) = 3u2 + 2(a20 − b20 − 2a1)u

+(a21 − 2a1a2 − b21 + 2b0b2).

Let

∆ = (a20 − b20 − 2a1)
2 − 3(a21 − 2a1a2 − b21 +2b0b2).

It is obvious that a22 − b22 < 0 if and only if a2 −
b2 < 0. Since limu→+∞ F (u) = +∞, if F (0) =
a22 − b22 < 0, we know that F (u) = 0 has at least one
positive root, and the characteristic equation has a pair
of purely imaginary roots.

If ∆ ≤ 0, then F ′(u) ≥ 0, and thus F (u) is
monotonically increasing for u ≥ 0. Hence F (u) = 0
has no positive root when F (0) = a22 − b22 > 0 and
∆ ≤ 0. Therefore, the characteristic equation has no
purely imaginary root.

Besides, if ∆ > 0, then F ′(u) = 0 has two real
roots:

u1 =
−(a20 − b20 − 2a1) +

√
∆

3

and

u2 =
−(a20 − b20 − 2a1)−

√
∆

3
.

If u1 > 0 and F (u1) < 0, then F (u) = 0 has positive
roots.

Let ul(1 ≤ l ≤ 3) be the positive roots of F (u) =
0 and ωl =

√
ul. By (7), we have

cosωlτ =

(b1 − a0b0)ω
4
l + (a2b0 + a0b2 − a1b1)ω

2
l − a2b2

(b0ω2
l − b2)2 + b21ω

2
l

.

Thus, if we denote

τ
(j)
l =

1

ωl
{arccosA+ 2jπ} ,

where A =
(b1−a0b0)ω4

l +(a2b0+a0b2−a1b1)ω2
l −a2b2

(b0ω2
l
−b2)2+b21ω

2
l

, l =
1, 2, 3, j = 0, 1, 2, . . .. Then ±iωl is a pair of purely
imaginary roots of (6) with τ = τ

(j)
l .

Define

τ0 = τ
(0)
l0 = min

l∈{1,2,3}
{τ (j)l }, ω0 = ωl0,

and
τj = τ0 +

2jπ

ω0
, j = 0, 1, 2, . . . .

From Lemma 1, it can be concluded that all the char-
acteristic roots have negative real parts for any τ ∈
[0, τ0). And then, we shall verify the transversality
condition.

Lemma 3 If F ′(ω2
0) ̸= 0 is satisfied, then

d(Reλ(τ0))
dτ

> 0.

Proof: Differentiating both sides of equation (6) with
respect to τ , we get[

dλ(τ)
dτ

]−1

=
eλτ (3λ2 + 2a0λ+ a1) + 2b0λ+ b1

λ(b0λ2 + b1λ+ b2)
−τ
λ
.

This gives[
dReλ(τ)

dτ

]−1

τ=τ0

= Re

[
eλτ (3λ2 + 2a0λ+ a1) + 2b0λ+ b1

λ(b0λ2 + b1λ+ b2)

]
τ=τ0

=
1

b21ω
4
0 + (b2 − b0ω2

0)
2ω2

0

{2b0ω2
0(b2 − b0ω

2
0)

(a1 − 3ω2
0)ω0[(b2 − b0ω

2
0) sinω0τ0]− b21ω

2
0

+2a0ω
2
0[(b2 − b0ω

2
0) cosω0τ0 + b1ω0 sinω0τ0]}

=
1

b21ω
2
0 + (b2 − b0ω2

0)
2
{3ω4

0 + 2(a20 − b20 − 2a1)ω
2
0

+a21 − 2a1a2 − b21 + 2b0b2}

=
F ′(ω2

0)

b21ω
2
0 + (b2 − b0ω2

0)
2
.

Hence,

sign
{

dReλ(τ)
dτ

}
τ=τ0

= sign{F ′(ω2
0)}.

Suppose for a moment that d(Reλ(τ0))
dτ < 0, then equa-

tion (6) has roots with positive real parts for τ < τ0
and close to τ0. This contradicts the fact that charac-
teristic equation has no root with positive real part for
τ < τ0. Thus, this completes the proof. ⊓⊔

From above analysis, we can establish the distri-
bution of characteristic roots of (6) and can derive the
stability of infected equilibrium and small amplitude
periodic solutions due to Hopf bifurcation [18].
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Theorem 4 Suppose R0 > 1. The following results
can be obtained.
(i) If ∆ ≤ 0, then all roots of (6) have negative real
parts for any τ ≥ 0, and the virus–free equilibrium
E1 is absolutely stable.
(ii) If a2 − b2 < 0 or ∆ > 0, u1 > 0, F (u1) < 0,
then all roots of (6) have negative real parts only when
τ ∈ [0, τ0). Moreover, the infected equilibrium E2 is
stable when τ ∈ [0, τ0) and unstable when τ > τ0. τ0
is the Hopf bifurcation value, which means that peri-
odic solutions will bifurcate from this positive equilib-
rium as τ passes through the critical value τ0.

This theorem can establish the existence of bifur-
cating periodic solutions. Further, by following the
algorithm in [18], we can also determine the direction
of Hopf bifurcation and stability of periodic solutions.
However, that procedure is so tedious that we omit it.

4 Global Continuation of Local Hopf
Bifurcation

It is known that the periodic solutions established by
Theorem 4 only exit in a small neighborhood of the
critical value. It is significant to explore the global ex-
istence of those bifurcating periodic solutions. Next,
by using the global bifurcation theorem due to Wu
[19], we shall study the global continuation of local
Hopf bifurcation at infected equilibrium E2.

For simplification of notation, setting ut =
(xt, yt, zt)

T , system (2) can be rewritten as the fol-
lowing functional differential equation:

u̇(t) = F (ut, τ, T ), (9)

where ut(θ) = u(t+ θ) ∈ C([−τ, 0], R3).
Following the work of Wu [19], we need to define

X = C([−τ,R3]),

Σ = Cl

{
(u, τ, T ) ∈ X ×R×R+ :
u is a T -periodic solution of (9)

}

and
N = {(û, τ, T ) : F (û, τ, T ) = 0}

where û and u are the equilibrium and a noncon-
stant periodic solution of equation (9), respectively.
Let C(û, τj , 2π/ω0) denote the connected component
through isolated center (û, τj , 2π/ω0) in Σ.

Lemma 5 All nonconstant periodic solutions of (2)
with positive initial values are ultimately uniformly
bounded when τ is bounded.

Proof: It follows from (2) that

x(t) = x(0) exp
{∫ t

0

(
s

x(v) −
kx(v−τ)z(v−τ)

x(v) − d
}

+ by(v)
x(v)

)
dv
}
,

y(t) = y(0) exp
{∫ t

0

(
kx(v−τ)z(v−τ)

y(v) − (b+ δ)
)

dv
}
,

z(t) = z(0) exp
{∫ t

0

(
Nδy(v)
z(v) − c

)
dv
}
,

which implies that the solutions of (2) cannot cross
the coordinate axes. Therefore, we have x(t) > 0,
y(t) > 0 and z(t) > 0 for t ≥ 0 under the positive
initial values.

From the first two equations of (2), we get

(x(t) + y(t))′ = s− dx(t)− δy(t)

≤ s− d̃(x(t) + y(t)),

where d̃ = min{d, δ}, and thus

lim supt→+∞(x(t) + y(t)) ≤ s

d̃
.

Then,

(z(t))′ = Nδy(t)− cz(t)

≤ Nδ
s

d̃
− cz(t),

and
lim supt→+∞z(t) ≤

Nδs

cd̃
.

Therefore, x(t), y(t) and z(t) are ultimately uni-
formly bounded. ⊓⊔

Lemma 6 System (2) has no nonconstant periodic so-
lutions with period τ when R0 > 1.

Proof: Note that if u(t) = (x(t), y(t), z(t))T is a
τ−periodic solution of (2), then u(t) is a noncon-
stant τ−periodic solution of the corresponding ordi-
nary differential system(1). It has been proved in
[11] that the positive equilibrium E2 is globally stable
when R0 > 1. Thus, system (1) has no nonconstant
τ−periodic solution. The proof is complete. ⊓⊔

Lemma 7 The periods of periodic solutions of (2) are
uniformly bounded.

Proof: By the definition of τj in Section 3, when
j ≥ 1, we have 2π/ω0 ≤ τj .For τ > τj , there ex-
ists an integer m, such that τ

m < 2π/ω0 < τ . As
system (1.0) has no nontrivial τ−periodic solution,
for any integer n, (2) has no τ

n−periodic solution.
This implies that the period T of a periodic solution
on the connected component C(û, τj , 2π/ω0 satisfies
τ/m < p < τ . So we can know that the periods of the
periodic solutions of (2) onC(û, τj , 2πω0

) are uniformly
bounded. ⊓⊔
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Theorem 8 Suppose that R0 > 1 and hypothesis (ii)
in Theorem 4 are satisfied. Then system (2) still has
periodic solutions even when τ > τj(j = 1, 2, . . .).

Proof: By the definition of isolated center in [19], we
can easily verify that (E2, τj , T ) is the unique isolated
center. The characteristic equation of (2) at positive
equilibrium E2 is

∆(E2, τ, p)(λ)

= λ3 + a0λ
2 + a1λ+ a2 + (b0λ

2 + b1λ+ b2)e
−λτ .

There exist ε > 0, γ > 0 and a smooth curve λ(τ) :
(τj − γ, τj + γ) → C, such that for any τ ∈ [τj −
γ, τj + γ],

∆(λ(τ)) = 0, |λ(τ)− ω0i| < ε,

and
λ(τj) = iω0,

dReλ(τ)
dτ

∣∣∣∣
τ=τj

̸= 0.

Let Ωε, 2π
ω0

= {(η, T ) : 0 < η < ε, |T − 2π
ω0
| < ε}.

If |τ − τj | ≤ δ and (η, T ) ∈ ∂Ωε,2π/ω0
are satisfied,

then ∆(E2, τ, T )(η +
2π
T i) = 0 if and only if η = 0,

τ = τj , T = 2π
ω0

.
If we put

H±(E2, τj ,
2π

ω0
)(η, T ) = ∆(E2, τj±γ, T )(η+ i

2π

T
),

then we have

γ(E2, τj ,
2π

ω0
) = degB(H

−(E2, τj ,
2π

ω0
),Ωε, 2π

ω0

)

−degB(H
+(E2, τj ,

2π

ω0
),Ωε, 2π

ω0

)

= −1.

According to Theorem 3.3 in [19], con-
nected component C(E2, τj ,

2π
ω0
) are unbounded.

From Lemma 5 and Lemma 7, the projection of
C(E2, τj ,

2π
ω0
) onto τ−space are unbounded.

As τ = 0, system (2) has no nontrivial periodic
solution, this implies that projection of C(E2, τj ,

2π
ω0
)

onto τ−space must be positive and has a lower bound.
Thus, periodic solutions still exist even if τ > τj . This
completes the proof. ⊓⊔

5 Numerical Simulation
In this section, we try to present some numerical ex-
amples for system (2) to validate the previous main

theorems. By extracting the values from [11], we
choose a set of parameters as follows:
s = 10, b = 0.2, k = 0.000024, d = 0.01,

δ = 0.16, c = 3.4, N = 1000.

Then R0 = 3.13725, E1 = (1000, 0, 0) and E2 =
(318.75, 42.5781, 2003.68). By direct computation
with Mathematica, we can also obtain that equation
(8) has the unique positive root ω0 = 0.00983002,
and τ0 = 195.585, a2 − b2 = −0.00168, F ′(ω2

0) =
0.455948 > 0.

First, we set τ = 10. From Fig.1 and Fig.2, it
is clear that the solutions will converge to different
equilibria with initial values I10 = (300, 0, 0) and
I20 = (300, 0.001, 0), respectively. This means that
even tiny infected CD4+ T–cells may lead to the dis-
ease transmission.

Next, we fix the initial value I30 =
(300, 40, 2000), the infected equilibrium E2 is
asymptotically stable as depicted in Fig.3 and Fig.4
when τ = 10 or τ = 120, which are smaller than
τ0. Fig.5 and Fig.6 show that periodic oscillations
occur when τ is larger that τ0, such as τ = 198 and
τ = 250. Thus, we can claim that the time delay τ is
vital to the solutions of system (2). The main results
show that if we shorten the incubation period, we will
control the disease.
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Fig. 1. Asymptotical stability of virus–free equilibrium

E1 for initial value (300, 0, 0) with τ = 10.
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Fig. 2. Asymptotical stability of infected equilibrium E2

for initial value (300, 0.001, 0) with τ = 10.
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Fig. 3. Asymptotical stability of infected equilibrium E2

for initial value (300, 40, 2000) with τ = 10 < τ0.
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Fig. 4. Asymptotical stability of infected equilibrium E2

for initial value (300, 40, 2000) with τ = 120 < τ0.
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Fig. 5. Periodic solution of system (2) for initial value

(300, 40, 2000) with τ = 198 > τ0.
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Fig. 6. Periodic solution of system (2) for initial value

(300, 40, 2000) with τ = 250 > τ0.

6 Conclusion
In this paper, we have introduced time delay to a math-
ematical model for the dynamics of HIV and CD4+ T
cells with cure rate. Stabilities of the two nonnega-
tive equilibria are investigated by analyzing the cor-
responding characteristic equations. By choosing the
time delay as a bifurcation parameter, a sufficient con-
dition has been established for local existence of Hopf
bifurcation at the positive infected equilibrium. Then,
with the help of global bifurcation theory due to Wu,
global continuation of local bifurcation has been de-
rived. Finally, through numerical simulations, it can
be concluded that the latent period plays an important
role in the disease spread and the disease may be con-
trolled by shortening that latent period.
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